студентка 2 курса магистратуры Кобзева В.М.

21 декабря 2020 г.

Дадим общее определение **мультифрактала**. Рассмотрим фрактальный объект, занимающий некую ограниченную область  $\zeta$  размера L в Евклидовом пространстве с размерностью d.

Пусть на каком-то этапе его построения он представляет собой множество из N>>1 точек, как-то распределенных в этой области. Будем предполагать, что, в конце концов,  $N\to\infty$ .

Разобьем всю область  $\zeta$  на кубические ячейки со стороной  $\varepsilon << L$  и объемом  $\varepsilon^d$ . Далее нас будут интересовать только занятые ячейки, в которых содержится хотя бы одна точка. Пусть номер занятых ячеек i изменяется в пределах  $i=1,2,...,N(\varepsilon)$ , где  $N(\varepsilon)$  – суммарное количество занятых ячеек, которое, конечно, зависит от размера ячейки  $\varepsilon$ .

Пусть  $n_i(\varepsilon)$  представляет собой количество точек в ячейке с номером i, тогда величина

$$p_i(\varepsilon) = \lim_{N \to +\infty} \frac{n_i(\varepsilon)}{N}$$

представляет собой вероятность того, что наугад взятая точка из нашего множества находится в ячейке i.

Другими словами, вероятности  $p_i$  характеризуют относительную заселенность ячеек. Из условия нормировки вероятности следует, что

$$\sum_{i=1}^{N(\varepsilon)} p_i(\varepsilon) = 1.$$

Стандартный метод мульти-фрактального анализа основан на рассмотрении обобщенной статистической суммы  $Z(q,\varepsilon)$ , в которой показатель степени q может принимать любые значения в интервале  $-\infty < q < +\infty$ :

$$Z(q,\varepsilon) = \sum_{i=1}^{N(\varepsilon)} p_i^q(\varepsilon).$$

Спектр обобщенных фрактальных размерностей  $D_q$  (размерностей Реньи), характеризующих данное распределение точек в области  $\zeta$  , определяется с помощью соотношения

$$D_q = \frac{\tau(q)}{q-1},$$



где нелинейная функция  $\tau(q)$  (в научной литературе она называется скейлинговой экспонентой) имеет вид

$$\tau(q) = \lim_{\varepsilon \to 0} \frac{\ln(Z(q,\varepsilon))}{\ln \varepsilon}.$$

Как мы покажем ниже, если  $D_q=D=const$ , т.е. не зависит от q, то данное множество точек представляет собой обычный фрактал, который характеризуется всего лишь одной величиной – фрактальной размерностью D. Напротив, если функция  $D_q$  как-то меняется с q, то рассматриваемое множество точек является мультифракталом.

Таким образом, мультифрактал в общем случае характеризуется скейлинговой экспонентой  $\tau(q)$ , определяющей поведение статистической суммы  $Z(q,\varepsilon)$  при  $\varepsilon\to 0$ 

$$Z(q,\varepsilon) = \sum_{i=1}^{N(\varepsilon)} p_i^q(\varepsilon) \approx \varepsilon^{\tau(q)}.$$

Покажем теперь, как ведет себя обобщенная статистическая сумма в случае обычного регулярного фрактала с фрактальной размерностью D. В этом случае во всех занятых ячейках содержится одинаковое количество точек  $n_i(\varepsilon) = N/N(\varepsilon)$ , то есть фрактал является однородным,

Тогда очевидно, что относительные населенности всех ячеек,  $p_i(\varepsilon) = 1/N(\varepsilon)$ , тоже одинаковы, и обобщенная статистическая сумма принимает вид  $Z(q,\varepsilon) = N^{1-q}(\varepsilon)$ .

Учтем теперь, что, согласно определению фрактальной размерности D, число занятых ячеек при достаточно малом  $\varepsilon$  ведет себя следующим образом:  $N(\varepsilon) \approx \varepsilon^{-D}$ .

Отсюда видно, что в случае обычного фрактала функция  $\tau(q)=(q-1)D$  – является линейной. Тогда все  $D_q=D$  и не завистя от q. Для фрактала, все обобщенные фрактальные размерности  $D_q$  которого совпадают, часто используется термин монофрактал.

Если распределение точек по ячейкам неодинаково, то фрактал является неоднородным, т.е. представляет из себя мультифрактал, и для его характеристики необходим целый спектр обобщенных фрактальных размерностей  $D_q$ , число которых, в общем случае, бесконечно.

Так, например, при  $q\to +\infty$  основной вклад в обобщенную статистическую сумму вносят ячейки, содержащие наибольшее число частиц  $n_i$  в них и, следовательно, характеризующиеся наибольшей вероятностью их заполнения  $p_i$ . Наоборот, при  $q\to -\infty$  основной вклад в сумму дают самые разреженные ячейки с малыми значениями заполнения  $p_i$ .

Таким образом, функция  $D_q$  показывает, насколько неоднородным является исследуемое множество точек  $\zeta$ .

Для  $q=0,\,Z(0,\varepsilon)=N(\varepsilon)$  получаем формулу

$$D_0 = \lim_{\varepsilon \to 0} \left[ -\frac{\ln N(\varepsilon)}{\ln \varepsilon} \right],$$

это означает, что величина  $D_0$  представляет собой хаусдорфову размерность множества  $\zeta$ .

#### Определение.

**Фрактальная (хаусдорфова) размерность**  $D_F$  произвольного предельного множества G в N-мерном фазовом пространстве определяется следующей формулой по Колмогорову-Хаусдорфу:

$$D_F = \lim_{\varepsilon \to 0} \left[ \frac{lnM(\varepsilon)}{ln\frac{1}{\varepsilon}} \right],$$

где  $M(\varepsilon)$  -минимальное число N-мерных кубиков со стороной  $\varepsilon$ , необходимых для покрытия всех элементов множества G.

Хаусдорфова размерность  $D_0$  – характеризует «пористость» или плотность объекта, то есть то, как объект заполняет собою пространство вложения.

Выясним теперь смысл величины  $D_1$ . Статистическая сумма равна

$$Z(1,arepsilon) = \sum_{i=1}^{N(arepsilon)} p_i exp[(q-1)\ln p_i] pprox ($$
при  $q o 1) \sum_{i=1}^{N(arepsilon)} [p_i + (q-1)p_i \ln p_i] =$ 
$$= 1 + (q-1) \sum_{i=1}^{N(arepsilon)} p_i \ln p_i.$$

В результате получаем формулу

$$D_1 = \lim_{\varepsilon \to 0} \frac{\sum_{i=1}^{N(\varepsilon)} p_i \ln p_i}{\ln \varepsilon}$$

. С точностью до знака в числителе находится энтропия Шеннона(количество информации, необходимое для определения состояния системы в пределах точности  $\varepsilon$ ):

$$I(arepsilon) = -\sum_{i=1}^{N(arepsilon)} p_i \ln p_i.$$

Поскольку энтропия является мерой количества информации, необходимой для определения системы в некотором положении i, можно сказать, что величина  $D_1$  характеризует информацию, необходимую для определения местоположения точки в некоторой ячейке. Благодаря этому свойству величину  $D_1$  называют информационной размерностью.

Мы знаем, что энтропия достигает своего максимального значения при равенстве вероятности  $p_i=1/N(\varepsilon)$ , тогда мы получим в этом предельном случае, что  $D_0=D_1$ .